[1]柳晨曦,蘇文勝,薛志鋼,等.改進的鄰域相關法在回轉支承故障診斷中的應用[J].起重運輸機械,2019,(08):94-97.
 Improved neighborhood correlation method used in fault diagnosis for slewing bearings[J].,2019,(08):94-97.
點擊復制

改進的鄰域相關法在回轉支承故障診斷中的應用()
分享到:

《起重運輸機械》[ISSN:1001-0785/CN:11-1888/TN]

卷:
期數:
2019年08期
頁碼:
94-97
欄目:
故障診斷
出版日期:
2019-05-31

文章信息/Info

Title:
Improved neighborhood correlation method used in fault diagnosis for slewing bearings
文章編號:
1001-0785(2019)08-0094-04
作者:
柳晨曦蘇文勝薛志鋼王奉濤劉曉飛
分類號:
TH165+.3
文獻標志碼:
A
摘要:
回轉支承是近40年發展起來的一種新型零部件,廣泛應用于各領域重大裝備中。由于其運行速度極低、旋轉方向和旋轉角度多變、承載能力高、工作環境復雜,為保證生產作業順利進行,對回轉支承進行故障診斷非常必要。本文對現場回轉支承三種運行階段的振動信號進行采集,利用去均值方法對信號降噪處理之后采用改進的鄰域相關法進行故障診斷和分類,通過模擬和實際數據驗證了方法的可行性,為回轉支承故障診斷提供參考。
Abstract:
Slewing bearings have been widely used for 4 decades in various fields equipment. Owing to its low speed, multiple rotation speed direction, heavy load complicated working condition, it is necessary to conduct fault diagnosis to maintain normal operation. This study focused on the vibration signals collected from 3 different working conditions of the slewing bearing. The signals were denoised by removing the mean. Then, improved neighborhood correlation method was adopted to diagnose classify faults occurring in different conditions. The simulated practical data were used to verify the feasibility of the method, this study provided a reference to fault diagnosis of slewing bearings.
更新日期/Last Update: 2019-07-02
内蒙古时时玩法介绍